
University of California

Santa Cruz

Distributed Assignment of Codes in Multihop Radio Networks

A thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Jyoti Raju

June 1998

The thesis of Jyoti Raju is approved:

Prof. J.J. Garcia-Luna-Aceves

Prof. Anujan Varma

Prof. Darrell D.E. Long

Dean of Graduate Studies and Research

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1998 2. REPORT TYPE

3. DATES COVERED
 00-06-1998 to 00-06-1998

4. TITLE AND SUBTITLE
Distributed Assignment of Codes in Multihop Radio Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

59

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright c by

Jyoti Raju

1998

iii

This thesis is dedicated to my grandfather { who taught me to enjoy learning

and to keep God as a constant companion.

iv

Contents

Abstract viii

Acknowledgements ix

1. Introduction 1

2. Background 4

2.1 Random-Access Protocols . 4

2.2 Spread-Spectrum Techniques . 5

2.3 Approaches to channel and code assignment 7

3. Code Assignment and Dissemination Algorithm 11

3.1 Network Model and Assumptions . 11

3.2 Principles of Operation . 12

3.3 Information at Each Node . 12

3.4 Information Exchanged among Nodes . 13

3.5 Updating the Priority List . 14

3.6 Sending New and Retransmitted CAM's 15

3.7 Processing an ACK . 18

3.8 Special case of a three-way clique . 18

3.9 Example of algorithm . 19

3.10 Embedding Code Assignment Algorithm in MAC and Routing Protocols . . 19

4. Correctness 24

5. Complexity of Protocol 29

v

6. Simulation 31

6.1 Implementation of CADA . 31

6.2 Results-Throughput Di�erence . 33

6.2.1 Experiment 1 . 34

6.2.2 Experiment 2 . 36

6.2.3 Experiment 3 . 36

6.3 Scalability . 39

6.3.1 Experiment 1 . 39

6.3.2 Experiment 2 . 41

6.4 Mobility . 41

6.5 Summary . 44

7. Conclusions 47

7.0.1 Results . 47

7.0.2 Future Work . 48

References 49

vi

List of Figures

2.1 Interference when two transmitters two-hops away have the same code . . 8

2.2 Interference when two receivers two-hops away have the same code 8

3.1 PseudoCode { Algorithm Initialization . 14

3.2 PseudoCode { Receiving Neighbor information from lower layer 16

3.3 Pseudocode { Receiving Code Assignment Message 17

3.4 PseudoCode { Sending Code Assignment Message 18

3.5 Example of a three-way clique . 19

3.6 Initial code assignment message . 20

3.7 Message sent after �guring out one-hop neighbor's code 20

3.8 Priority table after receiving information about one-hop and two-hop neighbors 21

3.9 Priority Table after changing code . 21

3.10 Handshake and Data Transfer using Transmitter's Code 22

3.11 Handshake and Data Transfer using Receiver's Code 23

4.1 The connectivity of a node in a network a maximum degree d 24

6.1 Stack used for implementation . 32

6.2 Topology used for throughput simulation 34

6.3 Receiver throughput at node 2 with varying rates of Poisson tra�c, Packet

Size = 435 bytes . 35

6.4 Receiver throughput at node 2 with varying rates of periodic tra�c, Packet

Size = 435 bytes . 35

6.5 Receiver throughput at node 2 with varying packet sizes, Average Interarrival

Time = 0.05 seconds . 36

6.6 Receiver throughput at node 2 with varying packet sizes, Average Interarrival

Time = 0.05 seconds . 37

vii

6.7 Topology for throughput simulation with varying number of neighbors . . . 37

6.8 Receiver throughput at node 2 with varying number of 1-hop neighbors,

Average Interarrival time = 0.1 seconds . 38

6.9 Receiver throughput at node 2 with varying number of 1-hop neighbors,

Average Interarrival time = 0.05 seconds . 38

6.10 Network topology for the scalability experiment 40

6.11 Change in number of event-driven CAMs as one-hop connectivity increases 40

6.12 Change in number of events as one-hop connectivity increases 41

6.13 Convergence time for networks of varying maximum connectivity 42

6.14 Initial 30 nodes topology for mobility testing 43

6.15 Number of event-driven Messages/sec at speeds of (a) 0.01 m/sec (b) 0.1

m/sec (c) 1.0 m/sec . 45

6.16 Events/sec at speeds of (a) 0.01 m/sec (b) 0.1 m/sec (c) 1.0 m/sec 46

Distributed Assignment of Codes in Multihop Radio Networks

Jyoti Raju

abstract

Code assignment is necessary for the proper functioning of an ad-hoc CDMA network.

Due to the irregular topology of ad-hoc networks, an optimal and distributed solution for

the code-assignment problem is NP-Complete.

This thesis presents a distributed greedy algorithm for assigning codes in a dynamic,

multihop wireless CDMA radio network. The same algorithm can be used to assign channels

in a multichannel CSMA/CA network. The algorithm does not require any form of syn-

chronization and is completely distributed. It can be used for both the transmitter oriented

and receiver oriented code assignment.

The algorithm is proven to be correct and its complexity is analyzed. The algorithm has

been implemented to assign channels in a multi-channel CSMA/CA network. The results

from the implementation are presented here and it is shown that the algorithm is scalable

and works correctly in mobile environments.

Keywords: CDMA, Dynamic Channel Assignment, Code Assignment

ix

Acknowledgements

I am especially grateful to my advisor, J.J. Garcia-Luna-Aceves for his invaluable guid-

ance and support. His sense of humour and patience makes working with him really worth-

while.

I would like to thank Prof. Anujan Varma and Prof. Darrell D. E. Long for being part

of my committee and for teaching great classes. Thanks are also due to Chane and Mumu,

my CPT gurus for answering the dumbest of questions.

A big thank you to all of CCRG and the folks up in AS 350. This work would not have

been as much fun without you all. Special thanks to Abby and Chris for keeping my life on

"schedule" and to Shree and Pratibha for always being there.

Above all, I'd like to thank my mom, my dad and my sister. I am highly indebted to

them for the "reality checks" they subject me to from time to time.

This work was supported in part by the Defense Advanced Research Projects Agency

(DARPA) under grant DAAB07-95-C-D157.

1

1. Introduction

Medium access control (MAC) protocols are basic building blocks of packet radio net-

works. Because these protocols control the media directly, they need to take into consider-

ation the low bandwidth and high interference characteristics of the wireless environment.

There have been a wide variety of MAC protocols for the wireless environment; these pro-

tocols can be classi�ed into those that use a single channel for transmission and those that

use multiple channels.

There are a wide variety of single-channel MAC protocols. These include schemes, based

on �xed channel assignment like FDMA and TDMA [BG94]. In FDMA the share of the

channel consists of a narrow frequency band and in TDMA the share consists of a time slot.

FDMA and TDMA are ideally suited for a low peak to average ratio tra�c; however, if

the tra�c is bursty, these protocols result in low bandwidth usage. The advantage of using

these algorithms is that they provide delay bounds for isochronous tra�c.

At the other end of the spectrum in single-channel MAC protocols are random-access

protocols like (ALOHA) [Abr70], Carrier Sense Multiple Access (CSMA) [TK75a], Multiple

Access Collision Avoidance (MACA) [Kar90], MACA for Wireless (MACAW) [VBZ94] and

Floor AcquisitionMultiple Access (FAMA) [FGLA97]. These protocols require every station

to contend for the channel if there is tra�c to send. A key advantage of these contention-

based MAC protocols is that they require very little synchronization and no centralized

control. However, their performance degrades as tra�c increases due to higher rates of

collisions, which is one of the reasons random-access protocols cannot guarantee a bounded

maximum delay for data tra�c.

One way to increase the throughput of a random access protocol is to have stations

resolving collisions on a control channel while sending data in separate data channels, ideally

one channel for every node or station. This prevents neighboring stations from interfering

with one another while transmitting data packets and also increases throughput. However,

it is not always possible to have as many data channels as there are nodes in the network.

2

This situation creates the channel-reuse problem with the constraint that stations two hops

away from each other cannot share the same data channel in order to avoid interference.

This thesis presents a distributed algorithm that solves the channel reuse problem. We call

this algorithm the Code Assignment and Dissemination Algorithm (CADA). The algorithm

dynamically assigns data channels to stations in a way that no two-hop neighbors have the

same data channel and therefore there is no interference while transmitting a data packet.

CADA uses the MAC protocol and the routing protocol of the network to acquire and

disseminate information respectively.

Another application of the channel assignment algorithm is to distribute codes in a code

divisionmultiple access (CDMA) network. CDMA networks use spread spectrum techniques

to transfer data. Using CDMA in packet-radio networks permits multiple stations within

range of the same receivers to transmit concurrently and without interference as long as the

stations do not have the same code. Several multi-access protocols have been proposed and

commercial systems have been deployed that take advantage of CDMA [Ric]. An important

design consideration in a multihop packet-radio network using CDMA is the assignment of

transmission codes to network nodes. CDMA has mainly been used in cellular networks in

which a base station takes on the task of assigning codes. In an ad-hoc network, this task

must be done distributedly. The situation here is similar to the one in the multi-channel

random-access case. The number of transmission codes is smaller than the number of nodes,

and senders and receivers must agree on which transmission code to use in a way that

avoids interference as much as possible. This means that stations two hops away from each

other need to use di�erent codes [Hu93]. Both the channel-assignment and code-assignment

problems can be mapped onto the two-hop node coloring problem of a graph.

Chapter 2 presents a brief survey of random-access protocols and previous work done

in the area of dynamic channel or code allocation. Chapter 3 describes our new algorithm

for distributed assignment of codes or channels. In Chapter 4 we prove that the algorithm

guarantees correct channel/code assignments after convergence, provided that there are

enough channels/codes available. Chapter 5 addresses the algorithm's complexity. Chapter

3

6 presents the results of simulation experiments. We aimed at analyzing the increase in

throughput due to correct channel/code assignment, the scalability of the algorithm and

its adaptivity to mobility. Finally, Chapter 7 presents our conclusions and ideas for future

work.

4

2. Background

2.1 Random-Access Protocols

The ALOHA protocol [Abr70] was one of the �rst random-access protocols to be used

in wireless communication. This protocol allows stations to transmit any time they desire.

If within some timeout no acknowledgment is received for the transmitted packet, then

the station assumes that a collision occurred and the packet needs to be retransmitted. An

improvement over pure ALOHA is to synchronize the channel by slotting time into segments

whose duration is exactly equal to the time for transmission of a single packet. This is know

as slotted ALOHA [Abr73, KL73]. Since each station starts packets only at the beginning

of a slot, when packets conict, it is ensured that they will overlap completely rather than

partially, providing an increase in channel e�ciency.

CSMA [TK75a] uses carrier sensing to avoid collisions by listening to the carrier due to

another stations transmission. An important assumption used here is that the propagation

delay on the channel is much smaller than a packet transmission time. Since, the vulnera-

bility period is reduced from the packet transmission time to the propagation time, CSMA

represents a substantial improvement over ALOHA. The throughput of CSMA protocols is

very good as long as there are no \hidden terminals". This means that there are stations

which cannot hear each other and consequently might send packets at the same time to a

receiver causing the packets to collide. In the presence of hidden terminals performance of

CSMA degrades to that of ALOHA.

One of the �rst solutions to the hidden terminal problem was the BTMA [TK75b]

protocol. This protocol required each wireless terminal to be within line-of-sight of a base

station. The base station transmits a busy tone on a channel di�erent from the data channel.

Thus, every terminal has to listen to the channel on which the busy tone is sent, before

transmitting. The main disadvantages of BTMA are that it requires an extra channel and

that it requires a receiver to transmit a busy tone while receiving data.

5

The next phase of wireless protocols was those using CSMA/CA techniques. Here a

station that has a packet to send, sends a request to send (RTS) over the channel. If the

receiver gets the packet correctly, it sends a clear to send (CTS). The CTS tells the sender

when to send the data. The advantage over CSMA protocols is that the data packet goes

in clear. Only the RTS's face contention. There have been many proposals of CSMA/CA

to date. The basic method was �rst proposed in SRMA [TK76]. MACA [Kar90] was a

CSMA/CA protocol that did not use carrier sensing, just like the ALOHA-based variation

of SRMA. MACAW [VBZ94] is a variation of MACA with better retransmission strategies.

However, both MACA and MACAW su�er from hidden-terminal interference, as proven in

[FGLA97].

FAMA-NCS [FGLA97] solves the hidden-terminal problem in multihop networks. This

is done by using CSMA/CA and using a CTS lasting much longer than the RTS. This

ensures that hidden senders detect carrier while waiting for their CTS's. The tail of the

CTS now becomes a busy tone from the receivers to all the senders, and all the senders back

o� enough to allow the data to go in the clear. Consequently, FAMA-NCS performs far

better than CSMA and ALOHA. One method to improve the throughput of FAMA-NCS is

to introduce multiple channels. In this scheme, all stations have a common control channel

and di�erent data channels. The RTS contention happens in the control channel. If the

RTS reaches the receiver contention-free, the receiver switches to the data channel of the

sender and sends back a CTS. The sender sends the data on the data channel after receiving

the CTS. For the CTS and data to go in clear, it is essential for nodes two hops away to

have di�erent data channels.

2.2 Spread-Spectrum Techniques

In recent years, the use of spread-spectrum techniques for wireless networks has been

an active area of research. CDMA is a direct application of spread-spectrum techniques.

CDMA is di�erent from the standard channel allocation strategies. Some of these standard

strategies divide the channel into frequency bands and then assign them statically (FDMA)

6

or dynamically (wavelength division multiplexing). Others allocate the channel in bursts

in time statically (FDMA) or randomly (ALOHA). CDMA allows each station to transmit

simultaneously on a wide frequency spectrum. Using a wide bandwidth reduces multipath

fading because of the frequency diversity achieved. It also increases tolerance to jamming

and narrow band interference.

CDMA comes in two forms. In the frequency hopping (FH) systems the total bandwidth

is partitioned into a set of channels of equal bandwidth [RKM95]. In this scheme, each

stations is assigned a hopping pattern corresponding to its code. Both the transmitter and

the receiver dwell on the same channel and hop together to another channel afterwards

while talking to each other. Commercial applications of FH use slow frequency hopping in

which the transmitter transmits more than one packet on a single channel. This requires

less synchronization among stations than fast frequency hopping.

The second form of CDMA is direct sequence (DS). The spread spectrum signals are

generated by linear modulation with wideband sequences (codes) assigned to each station.

The spreading codes are the most important aspect of CDMA technology. The codes are

Walsh codes based on a 64�64 Walsh matrix. Multiple transmissions can be separated

using coding theory as explained below [Tan96].

In DS-CDMA each bit time is subdivided into m short intervals called chips. Each

station is assigned a unique m-bit code or chip sequence. To transmit a 1 bit, a station

sends its chip sequence or code. To transmit a 0 bit, the stations send the one's complement

of it's code.

All chip sequences are pairwise orthogonal, which means that the normalized inner

product of any two code's S and T is 0. This can be written as

S � T �
1

m

mX

i=1

SiTi = 0 (2.1)

The normalized inner product of a code with itself is 1:

S � S =
1

m

mX

i=1

SiSi = 1 (2.2)

7

To get the bit stream of a sender, the receiver must know the sender's code in advance. The

receiver does the recovery by doing the normalized inner product of the received signal and

the code of the sender.

In an ideal CDMA network each station would have its own unique transmitting code.

However, the number of orthogonal codes is limited. This gives rise to interference, because

nodes in the neighborhood of one another may have the same codes.

Codes can be assigned in two ways in a CDMA network, the transmitter-oriented code

assignment and the receiver-oriented code assignment. In a transmitter-oriented code

assignment, the senders use their own code to transmit and the receivers tune into the

sender's codes to receive. In receiver-oriented code assignment, the senders use the receiver's

codes to transmit; the receivers merely listen on their code. Secondary interference can occur

in both cases. Two stations unaware of each other's existence can transmit to the same

receiver at the same time; which gives rise to the transmitter-oriented code assignment

problem shown in Fig. 2.1. The codes of the station are shown in the brackets. Here, A

and C need to have di�erent codes and are two hops away from each other. The second

case of secondary interference occurs when a station is transmitting to its neighbor and a

third station's transmission to some station other than the stations involved in the �rst

transmission causes an interference with the �rst transmission. This leads to the receiver-

oriented code assignment problem illustrated in Fig. 2.2. Here, C is transmitting to D but

causes interference at B, because B andD which are two hops away share the same code. As

can be seen from the earlier two examples, both transmitter-oriented and receiver-oriented

code assignment have the same requirement, i.e., no set of stations two hops away from one

another can have the same code.

2.3 Approaches to channel and code assignment

Several approaches have been proposed in the past for channel/code assignments. Most

of the papers dealing with channel assignment try to get optimal channel use in time by

creating optimal TDMA cycles. This means that all nodes in the network share the same

8

B

A(1)

C (1)

(2)

Figure 2.1: Interference when two transmitters two-hops away have the same code

A(3) B(1)

C(2) D(1)

Figure 2.2: Interference when two receivers two-hops away have the same code

channel and therefore need to be scheduled such that there are no collisions among stations.

The topology of the network is of major consequence, because stations that cannot hear

one another and cannot potentially destroy each other's transmissions should be allowed to

transmit at the same time. This is slightly di�erent from our problem of assigning di�erent

frequencies to di�erent stations. However, all solutions for getting a TDMA cycle can be

mapped onto the problem of assigning the least number of frequencies correctly in a network,

because the requirements for a solution are similar.

Chlamtac and Kutten [CK85] presented one of the �rst papers to address the problem

of creating a TDMA cycle in a multi-hop network. They prove that obtaining an optimal

assignment, such that the schedule is of smallest duration, is an NP-hard problem, and

presented a greedy heuristic that uses the spanning tree created by a network-level protocol.

This work was further extended in a later paper, where they presented the distributed

version of their protocol [CK87]; the distributed version uses a traveling token, which

incurs more overhead tra�c on the network. Since they set up a static schedule, they

9

are able to bound the delay a broadcast packet will su�er before it reaches all stations in

a network. Hajek and Sasaki presented two algorithms for obtaining �xed schedules in a

spread spectrum network [HS88]. Their �rst algorithm �nds a schedule of minimum length

that allows each pair of neighboring stations to converse for a prescribed length of time.

The second algorithm builds a link schedule that meets a prescribed end-to-end demand

in a schedule of smallest length. A di�erent approach by Cidon and Sidi consists of using

control segments during which the schedule for the transmission segments is decided [CS88];

in their model secondary conicts are not permitted unlike the model by Hajek and Sasaki,

where only primary conicts are taken into consideration. Ephremides and Truong [ET90]

presented a distributed solution to the scheduling problem requiring stations to exchange

schedules and require each station to know the schedule of stations one-hop and two-hops

away. Ramanathan and Lloyd mapped the TDMA cycle problem to the graph coloring

problem [RL93]. They also provided polynomial algorithms that improved the TDMA

cycle length. In their analysis, the length of the schedule depends on the thickness of the

network and not on the maximum degree of the network, as was the case in earlier papers.

Thickness is a measure of planarity. It is de�ned as the minimum number of planar graphs

a given graph can be split into. However, their algorithms are not distributed and work

only for an one-time schedule. All the methods described above create schedules based on

topology. Chlamtac and Farago [CF94] presented an algorithm which is independent of the

detailed topology. Instead, the schedule depends on global parameters like, the number of

nodes and maximum degree a node can have.

Transmitter-oriented code assignment is introduced by Makansi [Mak87]. Here, quasi-

orthogonal codes are assigned to transmitters in a packet-radio network in such a way that

hidden terminal interference is eliminated. A bound on the minimum number of codes for

correct code assignments is derived. Code assignment was proven to be NP-hard in the

paper by Bertossi and Bonuccelli [BB95]. Hu presented a technique using pairwise code

assignment in which both the transmitter and receiver are assigned the same code.

This thesis presents a distributed channel/code assignment algorithm. This algorithm

10

assigns a channel/code to each node in a way that no interference occurs after the algorithm

converges, provided that the number of channels/codes available for assignment is at least

d(d�1)+2, where d is the maximum number of one-hop neighbors any node can have. This

is because the algorithm assigns a data channel/code to a node that is di�erent than the

channels/codes assigned to nodes two hops away from the node. The algorithm is designed

to be part of the MAC and routing protocols of a multihop packet-radio network. It is

based on the asynchronous exchange of control messages that are part of the regular MAC

and routing messages, and the information generated by any one node propagates up to

two hops away from the node.

11

3. Code Assignment and Dissemination Algorithm

In this chapter, we mean both channel and code every time we use the word code. The

same algorithm applies for both cases.

3.1 Network Model and Assumptions

To describe the code assignment and dissemination algorithm (CADA), we use the term

\code" to mean channel, code or time slot in the context of assignment. We model a

multihop packet-radio network as an undirected graph G = (V;E) where V is the set of

nodes and E is the set of edges. Each node consists of a transceiver and a router. A

link between two nodes i and j in G means that i can hear j's transmission and j can

hear i's transmission. Each node uses an omnidirectional antenna for transmission and the

network works in half-duplex mode, which means that a node cannot transmit and receive

at the same time. A routing protocol is assumed to create and update the routing table

used at each node. This routing protocol provides information about who the node's active

neighbors are; this involves adding to the neighbor list new neighbors when they come up

and deleting neighbors that are no longer active. The routing protocol is assumed to have

some form of neighbor discovery mechanism such as a HELLO exchange [MGLA96]. Nodes

process messages they receive in FIFO order and links transmit packets in the FIFO order.

We also assume a MAC protocol that informs CADA of the code it hears the neighbors

using. The oor acquisition multiple access (FAMA) family of protocols [FG95] is the

example we use to illustrate the use of CADA with a MAC protocol. In FAMA, a sender

transmits a request-to-send (RTS) to the receiver, which in turn transmits a clear-to-send

(CTS) if it obtains the RTS free of errors. The RTS lasts longer than the propagation delay

and the CTS must be larger than the aggregate time incurred in an RTS, a maximum round

trip propagation delay and a transmit-to-receive turnaround time, so that collisions due to

hidden terminals are eliminated in the absence of erasures due to drastic node mobility.

When the network is �rst brought up, all transmissions take place over a common signaling

12

code using FAMA. As the stations decide on their codes, the stations use di�erent codes

for data transmissions.

A link is assumed to exist between two nodes only if there is good radio connectivity

and the update messages of the routing protocol can be sent reliably. Node failures are

modelled as all links incident on the node failing at the same time. A moving node is

considered attached to all nodes with which the node can exchange messages with a certain

probability of success; a moving node becomes detached from nodes with which it cannot

exchange messages with this probability of success. CADA runs in conjunction with the

routing protocol, which in turn runs on top of the MAC protocol.

3.2 Principles of Operation

The messages of CADA are called the Code Assignment Messages (CAM). These mes-

sages are sent as part of the messages exchanged in the network's routing protocol. These

messages could be lost due to changes in radio connectivity. Reliable transmissions of CAMs

is done with the help of retransmissions. After receiving a CAM, the receiver is required

to acknowledge it to the node that sent it, by sending an explicit ACK message indicating

that the CAM has been received and processed.

3.3 Information at Each Node

The following structures are needed for code assignment at each node.

� Priority List: Each node has a unique priority number assigned to it. This priority

number allows two-hop neighbors with the same code to decide which one of them

should keep the code and which must look for new codes. We decided to use the

address of a node as its priority number, because MAC addresses are unique and are

simple to use.

The priority list contains the priority numbers of the node, its one-hop neighbors and

its two-hop neighbors sorted in increasing order. Each entry in the list has a ag set

13

to 1 when the neighbor is one hop away or two if the neighbor is two hops away. The

codes assigned to the node itself and its neighbors are also listed.

� Code Assignment Message Retransmission List (CAMRL): This list has one

or more retransmission entries, where an entry is of the following nature.

{ The sequence number of the CAM.

{ A retransmission counter that is decremented every time the node sends a CAM.

{ An ACK-required ag that is actually a �eld of the size of the neighbor list. The

bit corresponding to a neighbor is set if the CAM is yet to be acknowledged by

the neighbor.

The CAMRL permits a node to know which CAM is not acknowledged by some of

the neighbors and needs to be sent again. The node retransmits a CAM when its

retransmission entry in the CAMRL reaches zero. The retransmission counter of a

new entry in the CAMRL is set equal to a small number (e.g., 3 or 4).

� Unassigned Code List (UCL): This list contains all the available codes, i.e. they

are not being used by any of the node's two-hop neighbors. This is implemented as a

linear array which can be indexed in constant time.

The pseudocode in Fig. 3.1 shows the variables and data structures used in CADA. The

procedure Code Init describes the intialization phase of the algorithm.

3.4 Information Exchanged among Nodes

A CAM propagates only from a node to its neighbors and no further. Each CAM

contains

� The address and code of the node which is sending the CAM.

� The addresses and codes of the node's one-hop neighbors.

� ACK's to earlier CAMs. An ACK entry speci�es the source and the sequence number

of the CAM being acknowledged.

� A response list of zero or more nodes that need to send an ACK for this CAM.

14

Variables and Data Structures used

in a node for Code Assignment

Priority Table : PT with entries for

1-hop and 2-hop neighbors.

Each entry has the following �elds:

adr: Neighbor Address.

mask: Neighbor Mask.

code: Neighbor Code.

hop: Number of hops.

set to 0 for node

set to 1 for 1-hop neighbor

set to 2 for 2-hop neighbor

dual: Clique Flag

set to 0 by default

Code List : CL where each entry of the list

corresponds to a single code.

Each entry is marked as assigned or unassigned

MAX CODE : The maximum number of codes/channels the

MAC layer supports

Procedure Code Init(adr; mask)

This module initializes the data structures for

the Code Assignment Algorithm running at node i.

The two variables adr and mask de�ne the

FAMA interface used by the node i.

begin

for each code in CL

CL[code] unassigned

end for each

pick random code rcode

CL[rcode] assigned

hops 0

dual 0

add i to Priority Table(adr; rcode;hops; dual)

send Indication to MAC layer about new code

end

Figure 3.1: PseudoCode { Algorithm Initialization

If a single CAM is not large enough to hold all the codes and addresses, the information

can be split up into more than one CAM.

A CAM is sent in the following situations.

1. When a node comes up, it broadcasts a CAM to all its neighbors, indicating that its

priority list consists of its own address and its own code.

2. When a node i detects a change of code by any of its one-hop neighbors, i makes the

required changes in its priority list and sends a CAM to all its one-hop neighbors,

including the one that changed the code.

3. When a node i �nds that a one-hop neighbor j is no longer active, it drops j from

the priority list. This information is then conveyed to all its one-hop neighbors by a

CAM reecting the changes.

3.5 Updating the Priority List

A node updates its priority list either after detecting a change of code in one of its

one-hop neighbors or after receiving a CAM containing information about a change of code

by its two-hop neighbors.

15

When a node notices a change of code in any of its one-hop neighbors, it makes the change

in its own priority list and sends a CAM with its own address and code, and the address of all

its one-hop neighbors. This set of actions is handled by the procedure Recv Nbr Indication

shown in Fig. 3.2.

If a two-hop neighbor changes its code, then any of the following three situations may

arise:

1. If the new code of the two-hop neighbor is not the same as i's code, then the new code

in entered into the priority list in the entry corresponding to the two-hop neighbor.

2. If the new code of the two-hop neighbor is the same as i's code and the address of the

two-hop neighbor is lesser than i's code, then i picks up a new code. The new codes

of the two-hop neighbor and i are entered into the priority list.

3. If the new code of the two-hop neighbor is the same as i's code and the address

of the two-hop neighbor is greater than i's code, then i retains its code and there

is a temporary conict, until the two-hop neighbor changes its code. The two-hop

neighbor learns i's code because of the CAM sent by the one-hop neighbor of i. This

conict does not stop the data transfer in the network.

In the �rst two cases the UCL has to be updated. All the codes used by the two-hop

neighbors are marked as unavailable in the UCL. Procedure Recv CAM shown in Fig. 3.3

handles all the above cases.

3.6 Sending New and Retransmitted CAM's

Whenever a node i sends a new CAM, it must perform the following steps:

1. Decrement the retransmission counter of all the new entries in the CAMRL.

2. Delete the entries corresponding to entries in the new CAM.

3. Add an entry in the CAMRL for the new CAM.

If a certain CAM in the CAMRL has all its entries covered be a new CAM transmission,

the old CAM is deleted from the CAMRL.

16

Procedure Recv Nbr Indication(nbr,code)

The MAC layer sends an indication up every time it hears

a neighboring node advertise its channel.

This indication consists of the neighbor's address nbr

and its code code.

begin

if the address of nbr exists in PT then

if (PT [nbr]:code is not the same as code) then

if(PT [nbr]:hops is not equal to 1) then

if (PT [nbr]:dual equals 0) then

PT [nbr]:dual 1

end if

end if

PT [nbr]:code code

Send CAM

end if

else

if (PT [nbr]:hops is not equal to 1) then

if (PT [nbr]:dual equals 0) then

PT [nbr]:dual 1

Send CAM

end if end if

end else

end if

else

add nbr to Priority Table

PT [nbr]:code code

PT [nbr]:hops 1

PT [nbr]:dual 0

Send CAM

end else

end

Figure 3.2: PseudoCode { Receiving Neighbor information from lower layer

When the retransmission counter for a CAM retransmission entry expires, node i sends a

new CAM with the same data as the old CAM. However, it has a new sequence number and

a new response list. This new response list speci�es the neighbors that did not acknowledge

the CAM earlier. The old entry in the CAMRL is deleted and a new entry created for the

new retransmission.

Using the above retransmission strategy, a node can keep sending CAMs, until all its

one-hop neighbors acknowledge it. However, if a node gets no response from a neighbor after

a timeout, it considers the neighbor dead and resets bits corresponding to this neighbor in

the response lists of all the entries in the CAMRL.

17

Procedure Recv CAM()

This procedure updates the Priority Table and the Code List

using the information in the Code Assignment Message.

begin

for each entry c in the CAM

if an entry for c:adr exists in PT then

get the corresponding entry e from the PT

if c:code equals the node i's own code then

if e:adr is greater than the node i's address then

set ag ChangeCode

end if

end if

if c:code not equal to e:code then

CL[e:code] unassigned

end if

CL[c:code] assigned

PT [c:adr]:code c:code

if ((c:hops+ 1) 6= e:hops) then

PT [e:adr]:hops (c:hops+ 1)

PT [e:adr]:dual 1

end if

end if

else

add entry c to Priority List

PT [c:adr]:hops 2

PT [c:adr]:code c:code

PT [c:adr]:dual 0

if c:code is same as i's code then

if c:adr is greater than the node i's address then

set ag ChangeCode

end if

end if

CL[c:code] assigned

end else

end for each

if ag ChangeCode is set

pick new random code ncode for i

if new random code ncode is available then

CL[ncode] assigned

PT [i]:code ncode

send Indication to the MAC layer

end if

end if

end

Figure 3.3: Pseudocode { Receiving Code Assignment Message

18

Procedure Send CAM()

This procedure broadcasts a Code Assignment Message

to all neighbors.

begin

set the destination of CAM to the broadcast address

for each entry e in the PT

if ((e:hops equals 1) or (e:dual equals 1))then

create entry c to add to CAM

c:hops 1

c:code e:code

c:adr e:adr

add entry c to the CAM

end if

end for each

send packet

end

Figure 3.4: PseudoCode { Sending Code Assignment Message

3.7 Processing an ACK

The ACK entry bears the sequence number of the CAM it acknowledges. As soon as

an ACK is received by a node, the node searches its CAMRL to �nd the entry with the

required sequence number. If a match is found the node resets the ACK required ag for

the neighbor which sent the ACK.

A node may receive an ACK for an entry which has been deleted due to more recent

CAMs to the same neighbor or for an entry which has undergone a change in sequence

number due to more recent retransmissions. In that case, the node simply ignores the

ACK.

3.8 Special case of a three-way clique

The algorithm needs to be modi�ed slightly to accommodate the presence of three-way

cliques. An example is shown in Fig. 3.5. Here, A, B and C are both one-hop and two-hop

neighbors to each other. Since they can all cause two-hop interference, they need to be

treated as two-hop neighbors, i.e., all three of them need to have separate codes. However,

A needs to report B and C to its neighbors D and E as one-hop neighbors as they can

cause two-hop interference for D and E. We surmount this problem, by setting a special

19

ag if any nodes are part of a three-way clique. If the ag is set for a certain node, this

node is treated as a two-hop neighbor while assigning codes but as a one-hop neighbor while

forwarding information.

A

B

C

D

E

Figure 3.5: Example of a three-way clique

3.9 Example of algorithm

The working of the algorithm is shown in an example �ve-node network with ten available

codes, as shown in Fig. 3.6. When node G comes up, it picks up a random code for itself

and sends an initial CAM consisting of only its address and code. After the MAC protocol

hears the codes used by the one-hop neighbors, it informs the algorithm. The CAM now

has two more entries which consist of the address and code of one-hop neighbors B and H

as shown in Fig. 3.7. Fig. 3.8 shows the priority table at node G after it hears CAMs from

its one-hop neighbors. Node G realizes that it has the same code as two-hop neighbor A.

Since node G has a higher address it picks up a new code as shown in Fig. 3.9. As can be

seen from all the �gures, the unassigned code list contains all the codes not being used by

the node or its two-hop neighbors.

3.10 Embedding Code Assignment Algorithm in MAC and Routing

Protocols

The proposed code assignment algorithm can be used as an integral part of the MAC

and routing protocol of a packet-radio network.

20

A

B

G

H

I

G’s Code Assignment Message

G 6

G’s Unassigned Code List

1 2 7 8 9 10543

Figure 3.6: Initial code assignment message

A

B

G I

G’s Code Assignment Message

1 2 7 8 9 10543

G’s Unassigned Code List

B

H

G

H

2

6

9

Figure 3.7: Message sent after �guring out one-hop neighbor's code

21

A

B

G

H

I

2 3 4 5 7 8 9 10

G’s Priority Table

A

G

H

6

2

6

9

2

1

1I 2

0

1

B

G’s Unassigned Code List

Figure 3.8: Priority table after receiving information about one-hop and two-hop

neighbors

A

B

G

H

I

G’s Priority Table

A

G

H

6

2

9

2

1

1I 2

0

1

B

G’s Unassigned Code List

3

2 4 5 7 8 9 10

Figure 3.9: Priority Table after changing code

22

In our model, all stations have a common signaling code on which they implement an

RTS-CTS exchange similar to the 802.11 protocol [IEE91]. The data transfer can be done

on the receiver's code for ROCA or on the transmitter's code for TOCA. The advantage

of some form of code assignment is that a node does not require all other nodes in its

one-hop neighborhood to be silent while it receives a transmission. This increases usage of

bandwidth.

RTS(S)

CTS(R) Data Train (S) Data Train (S)

Signalling Code

S’s Data Code Interval Time

Figure 3.10: Handshake and Data Transfer using Transmitter's Code

We investigate the case for the transmitter-oriented approach in which we use the

sender's code for data transfer (Fig.3.10). Consider two nodes S and R that are immediate

neighbors of each other. The senders of the packets are speci�ed in the parentheses. Node

S needs to transmit data to R and sends an RTS to R specifying its transmission code and

the number of data packets it plans to send. The RTS is sent on the signaling code. After

sending its RTS, node S shifts to its own data code and listens. R send back a CTS on S's

data code. The CTS contains the maximum number of data packets it can allow. After

successfully receiving the CTS, node S transmits its data on its data code.

After the speci�ed number of data packets have been transmitted and received, S and R

switch back to the signaling code. If the RTS-CTS exchange also speci�es the interval time

between two packet bursts, then S can switch to its data code automatically after the initial

handshake, without an intervening RTS-CTS handshake. The last packet of a data burst

can contain control data specifying if there are more data bursts following. If node R gets

any requests that would require it to receive data from any node other than R during the

23

time it has reserved for R, it refuses the requests. Also, any RTS arriving(on the signaling

code) at R while it is receiving data from S (on S's data code) would not destroy the data.

This takes care of the multihop problem.

Now, with the availability of assured time for data transmission, one can visualize

guaranteeing a certain rate of data transmission between two neighbors. This is useful

for real-time data tra�c, which requires constant delay. However, one has to keep in mind

that if the topology changes constantly, such a rate may be sustained, if the code assignment

has to be modi�ed as a result.

RTS(S)

CTS(R) Data Train (S) Data Train (S)

Signalling Code

Interval TimeR’s Data Code

Figure 3.11: Handshake and Data Transfer using Receiver's Code

A similar treatment can be done for the receiver oriented approach shown in Fig. 3.11.

Here, the RTS is sent on the signalling code but the CTS and data are sent on the reciver's

data code.

A CAM must contain information about a node's one-hop neighbors and their codes.

If the distance metric in a routing algorithm is hop-count, then reading a routing update

message from a node is enough for the code assignment algorithm to deduce a node's one-

hop neighbors. However, the codes assigned to the neighbors are not present in the routing

updates. With the addition of this �eld, the routing updates can be used as CAMs.

24

4. Correctness

This section shows that the code-assignment protocol is correct under the assumption

that an underlying protocol assures the following conditions:

1. A node detects within a �nite time the existence of a new neighbor or the loss of

connectivity with a neighbor. A node also detects within a �nite time a change in the

code used by a neighbor.

2. All messages transmitted over a radio link are received correctly and in the proper

sequence within a �nite time.

3. All messages and code changes are processed one at a time within a �nite time and

in the order in which they are detected.

D-1

D
D-1

D-1

D-1

Figure 4.1: The connectivity of a node in a network a maximum degree d

Another assumption we make is that we have a minimum of d(d� 1)+2 codes, where d

is the maximum degree of the network. One code is required for signaling and the use of the

rest of them can be explained using Fig. 4.1. A node can have a maximum of d neighbors.

Each of these neighbors can in turn have d neighbors. Consider the central node i. It has

d one-hop neighbors and d(d � 1) two-hop neighbors. The node should not have a code in

common with any of its two-hop neighbors. Thus, it is clear that we require d(d � 1) + 1

25

codes. This is a su�cient condition to obtain valid code assignments [Hu93]. The network

can still operate with fewer than d(d � 1) + 2, even though some two-hop neighbors have

the same codes. However, for the proof, we assume that d(d� 1) + 2 codes exist.

Three additional assumptions are that there are a �nite number of topology changes up

to time t0, and that no more changes occur after that time, and that nodes can correctly

determine which CAMs are more recent than others, and that there are a �nite number of

nodes in the network.

Correctness for this algorithm means that, within a �nite time after t0, all nodes obtain

information about the codes of their one-hop and two-hop neighbors. This allows them to

calculate a code for themselves that is di�erent from the codes of all their two-hop neighbors.

There are two di�erent ways a node can change its code:

1. The node can change its code to any of the codes unused by its two-hop neighbors

(this includes codes of one-hop neighbors).

2. The node can change to a code that is already being used by a two-hop neighbor with

an address greater than itself.

A node is said to have consistent information in its priority table if it has the most

recent information about the change of codes of its one-hop and two-hop neighbors.

Theorem 1: A �nite time after t0, all nodes have consistent information in their

priority tables and the codes they select based on this information are such that no two-hop

neighbors have the same code.

To prove the above statement we need to show that the following conditions are satis�ed:

1. All nodes eventually stop updating their priority list and stop sending update messages

to their neighbors.

2. All nodes must have consistent code information in their topology databases within a

�nite amount of time after t0.

3. If the information in the node is consistent and most recent, a node only makes a

valid change of code and there are no deadlocks.

26

4. If all nodes make only valid change of codes, then we have a correct code assignment,

such that no pair of two-hop neighbors have the same code.

Lemma 1: All nodes eventually stop updating their priority list and stop sending update

messages to their neighbors.

Proof: First, note that there are a �nite number of nodes in the network, and that

by assumption a �nite number of code changes can occur up to time t0, after which no

more topology changes occur. Also by assumption, a change of code by a certain node

is detected within a �nite amount of time by the neighboring nodes. These neighboring

nodes, in turn update their priority lists and send out at most one CAM to each of their

neighbors. Therefore, for any change of code, there can be at most d(d� 1) messages sent.

A node x that does not allow the protocol to terminate must be generating an in�nite

amount of CAMs. This is only possible if one of its neighbors x� 1 is changing its code an

in�nite number of times. For x � 1 to change its code an in�nite number of times, it has

to get an in�nite number of CAMs from a one-hop neighbor x � 2. In turn, x � 2 would

send in�nite number of CAMs only if a one-hop neighbor x� 3 changes its code an in�nite

number of times. Because the network is �nite and node ID's are unique, it follows from the

code-assignment algorithm operation that there is always a node with the lowest ID that

never changes its original code. Accordingly, it is impossible to continue with the same line

of argument and the protocol can produce only a �nite number of CAMs; therefore, the

message transfer must stop within a �nite time after t0.

Q.E.D.

Lemma 2: All nodes must have consistent code information in their topology databases

within a �nite amount of time after t0.

Proof: Consistent code information means that the node knows about all the recent

code changes in its one-hop and two-hop neighbors. Consider some node i; a lower-level

protocol guarantees that i detects a change of code in any of its one-hop neighbors within

a �nite time.

27

Consider the case of a node i whose two-hop neighbor k changes its code. This two-hop

neighbor is the one-hop neighbor of at least one of i's one-hop neighbors (j). It is true that

j detects a change in k's code in a �nite time. This detection causes a change in j's priority

list, which in turn causes j to send a CAM to all its one-hop neighbors including i and k.

Because, we assume that node j processes CAMs in a �nite time, we must have the latest

code change information in a �nite time after the last change, i.e., after t0.

Q.E.D.

Lemma3: If the information in the node is consistent and most recent, a node only

makes a valid change of code and there are no deadlocks.

Proof: When a node receives a CAM, it makes changes in its priority table and

determines whether any of its two-hop neighbors use the same code as the one it uses.

If no two-hop neighbor has the same code, the node does nothing. If a two-hop neighbor

has the same code, then the node checks the address of the two-hop neighbor. If the two-hop

neighbor has a larger address, then the node keeps its own code. If the two-hop neighbor

with the same code has an address smaller than the node, then the node has to pick up a

new code from the set of unassigned codes. If there are d(d� 1) + 2 codes, there always is

some code available to pick. Therefore, there is always a valid change of code, that can take

place in a �nite time. Furthermore, there exist no deadlocks because there are no cases in

which a node has to wait forever for the availability of a code.

Q.E.D.

Lemma 4: If all nodes make only valid changes of codes, then we have a correct code

assignment in which no two-hop neighbors have the same code.

Proof: Consider a set of two-hop neighbors a1; a2::::; an sorted with respect to their

addresses. Under the condition of valid change of codes, no node can have the same code as

a two-hop neighbor with lesser address, i.e, a2 cannot have the same code as a1, a3 cannot

have the same code as a1 and a2. If the condition of valid change of codes is true for all

nodes, no node ai can have the same code as ai�1; ai�2; :::; a1. If we continue this argument

until reaching an, we see that an cannot have the same code as an�1; an�2:::a1. From this

28

we see that, for a set of two-hop neighbors with a bounded number of nodes, no two nodes

have the same code. One of the assumptions we made is that we have a �nite network,

i.e. a bounded number of nodes. Therefore, we have a correct code assignment in which no

two-hop neighbors have the same code.

Q.E.D.

29

5. Complexity of Protocol

Communication Complexity is the number of messages exchanged by CADA in the

worst case. Messages are sent when a node detects a change of code by any of its one-hop

neighbors.

There can be two results of a node changing its code.

1. The node's new code is not the same as any of its two-hop neighbors' codes. In this

case, there are only O(d2) messages exchanged because each one-hop neighbor sends

CAMs to all its one-hop neighbors.

2. The node's new code is the same as one of its two-hop neighbors' code. In this case,

the two-hop neighbor might have to change code, which in turn could cause CAMs

to be sent. In a pathological case, a node's change of code might cause all the nodes

in the network to change their codes.

From the above, it follows that the number of messages is bounded by O(jV j:d2).

Complexity of Computation is the number of steps it taken when the algorithm is

invoked at any node. The most important routines to analyze are Recv Nbr Indication and

Recv CAM. Recv Nbr Indication is called when the algorithm receives an indication from a

lower layer about the code of a one-hop neighbor. If the code has changed or a new neighbor

is discovered, the node sends a CAM . This operation of sending a CAM requires a linear

scan of the priority list which is of the order of O(d2). Recv CAM reads each entry in a

CAM and performs certain actions. There are d+1 entries in the CAM , in the worst case.

This includes new entries that did not exist in the priority list earlier. The entries in the

CAM are presumed to be in the sorted order. A scan of the CAM is done and the new

nodes are added to the priority table. If a new code is used this code is marked as assigned

in the unassigned code table. Because the priority list and the unassigned code table can be

implemented as hash tables accessible in constant time, Recv CAM takes time proportional

to d + 1. While reading each of the entries, we can check if any of the two-hop neighbors

30

of the node have the same code as the node. If they, do a ag is set. After reading all

the entries, if the ag is set, the node needs to �nd a new code. In the worst, this can

involve a linear search of the unassigned code list which is of size c. Thus the computation

complexity of the protocol is O(d + c), and we know from earlier discussions that c needs

to be at least O(d2); therefore, the complexity is O(d2)

Storage Complexity is the amount of memory the major structures in the algorithm

use. The priority list has d(d� 1)+d+1 entries. TheMRL can have a speci�ed maximum

number of entries which is presumed to be a constant. The UCL has to have a minimum

of d(d � 1) + 2 entries. Therefore, the storage complexity is O(d2).

31

6. Simulation

In this chapter, we present the simulation results for CADA, which was described and

proved correct in Chapters 3 and 4 respectively. The simulations presented here attempt to

numerically quantify three main performance parameters: the gain in throughput achieved

by using the code assignment algorithm, the scalability of the code assignment algorithm

and the adaptability of the algorithm to mobility.

The rest of the chapter is organized as follows. Section 6.1 gives a brief introduction

of the simulation tool used and discusses the metrics used to measure the performance of

the algorithm. Section 6.2 presents the results for the throughput comparison. Section

6.3 describes the experiments used to measure the scalability of the algorithm. Section

6.4 presents the convergence time for varying degrees of mobility. Finally, Section 6.5

summarizes the chapter.

6.1 Implementation of CADA

The simulations of the CADA were done using the C++ Protocol Toolkit (CPT) 1

. The simulation environment is modelled to be as close to real-world as possible. This

allows seamless transition of the simulation protocol software into an embedded hardware

system.

CPT comes along with the CPF library which has pre-de�ned objects that can be used

to reduce the amount of code that needs to be written. Some example objects are : Node,

Protocol, Protocol Shell, Device, Packet, Control Parameters, Bu�er, Timer, Hash Table,

Event, Queue, Priority Queue, Finite State Machine, Data Manager, and Log Manager.

CADA is derived from the Protocol object. Protocol objects talk to each other through

the Packet and Control interfaces. The Packet interfaces are used to send packets to lower

or upper layers and to receive packets from them. The Control interfaces are used to send

control messages up and down in the protocol stack. The structure of the protocol stack

1We thank Rooftop Communication for designing CPT.

32

for a wireless router with code assignment capability is shown in Fig. 6.1. This same stack

is used in the simulations. WIRP is the CPT implementation of Wireless Internet Routing

Protocol [MGLA96] and FamaIpIf is the CPT implementation of FAMA [FGLA97] with

additional functionality added to interface with IP and handle IP packets.

UDP

IP

Packet Interface

Control Interface

Code Assignment Algorithm

FamaIpIf

WIRP

Figure 6.1: Stack used for implementation

The following are the metrics studied in the various experiments:

Throughput: Having correct data channel assignments should result in an increase in

throughput. The �rst experiment is designed to measure the di�erence in throughput when

there is correct code assignment, as compared to having wrong code assignment, i.e., nodes

two hops away from each other having the same code. Throughput is de�ned as the number

of packets received per unit time at the receivers. Throughput is measured at the MAC

layers and thus includes both the control packets sent by the various upper layers and the

data packets sent by the tra�c generator. However, the rate of packets sent by the tra�c

33

generator far exceeds the rate of control packets. Therefore, to see the performance of the

MAC layer, we change the size and rate of packets sent by the tra�c generator. Most

experiments are done for two types of data tra�c - Poisson and periodic.

Number of messages: In the complexity analysis, we stated that the number of code

assignment messages increases linearly with the maximum connectivity of the network.

This is veri�ed in the experiments presented in Section 6.3 and Section 6.4. We measure

the number of control messages sent and received until the algorithm converges. CADA

converges when every node has a code that is di�erent from the codes of all its two-hop

neighbors.

Events: This metric involves measuring the total number of changes to the priority table.

This includes counting the number of additions of nodes and changes in the codes and

number of hops of the nodes already present in the priority table.

Time for convergence: The time it takes from the start of the simulation to the time

nodes have correct code assignments and there are no more event-driven messages in the

network.

Both the time and number of messages are measured in networks that have no data

tra�c. We measure the last two metrics in experiments testing scalability and mobility

adaption.

6.2 Results-Throughput Di�erence

In this section we see results from experiments designed to test the increase in throughput

resulting from using code assignment. The topology for the �rst two experiments is the

simplest possible case of two-hop channel interference. The topology is shown in Fig. 6.2.

This is a four node network running the multichannel version of FAMA. The dashed lines

show the connectivity in the topology. Therefore, node 2 can only hear node1 and node3.

Node4 acts as a hidden terminal to node 2. Each of the radio links has a capacity of 1

Mb/s and has zero bit error rate. This implies that control RTS packets are lost only due

to collisions and data packets are lost only due to interference by a transmission from a

34

node two hops away. There is no packet loss caused by fading, random noise and other such

channel problems. The simulation incorporates noncapture, i.e., the overlap of any fraction

of two packets results in destructive interference and both packets must be retransmitted.

node1

node2

node3

node4

wireless connectivity

data traffic

Figure 6.2: Topology used for throughput simulation

There are two streams of data tra�c. One from node 1 to node 2 and the other from

node 3 to node 4. We compare two situations. The �rst is when there is correct data

channel assignment and the second is when there is wrong data channel assignment. For

the wrong data channel assignment, all the nodes are assigned the same data channel. Two

types of data tra�c are considered, periodic and Poisson.

6.2.1 Experiment 1

For the �rst experiment, the receiver throughput at node 2 is considered, and we measure

the number of Kbytes of data received per second by node 2. The interarrival time of the

data is varied from 0.1 seconds to 0.01 seconds. The size of all data packets is 435 bytes. All

the measurements are done after the network reaches steady state, i.e., there are no changes

in the topology of the network and therefore there are no event-driven control messages being

sent. From Fig. 6.3 and Fig. 6.4, we can see that correct data channel assignment results in

increased throughput. In both kinds of tra�c the throughputs plateau after a certain data

35

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

100002000030000400005000060000700008000090000100000

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Inter-arrival time in microseconds

Receiver Throughput for poisson traffic

correct code
wrong code

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

100002000030000400005000060000700008000090000100000

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Inter-arrival time in microseconds

Receiver Throughput for poisson traffic

correct code
wrong code

Figure 6.3: Receiver throughput at node 2 with varying rates of Poisson tra�c,

Packet Size = 435 bytes

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

100002000030000400005000060000700008000090000100000

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Inter-arrival time in microseconds

Receiver Throughput for periodic traffic

correct code
wrong code

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

100002000030000400005000060000700008000090000100000

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Inter-arrival time in microseconds

Receiver Throughput for periodic traffic

correct code
wrong code

Figure 6.4: Receiver throughput at node 2 with varying rates of periodic tra�c,

Packet Size = 435 bytes

rate is reached. This is due to increased number of collisions. However, the throughput

from correct channel assignment always saturates at a higher data rate, approximately 39%

higher.

36

6.2.2 Experiment 2

This experiment uses the same set-up as Experiment 1, but varies the data packet size.

The sizes tested are 500, 700, 900 and 1100 bytes, respectively. The interarrival time of the

packets is kept constant at 0.05 seconds. The results of correct and wrong data channel

assignment are plotted.

5.000

10.000

15.000

20.000

25.000

400 600 800 1000 1200

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Packet size in bytes

Receiver Throughput for periodic traffic

correct data channels
wrong data channels

5.000

10.000

15.000

20.000

25.000

400 600 800 1000 1200

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Packet size in bytes

Receiver Throughput for periodic traffic

correct data channels
wrong data channels

Figure 6.5: Receiver throughput at node 2 with varying packet sizes, Average

Interarrival Time = 0.05 seconds

The results are shown in Fig. 6.5 and Fig. 6.6. It is apparent that using correct channel

assignment allows the throughput to increase as the packet size increases. The wrong

channel assignment does not see as great an increase in throughput because if there is two-

hop interference while a larger data packet is being transmitted a greater amount of data

is lost.

6.2.3 Experiment 3

This experiment uses a di�erent network topology than the previous two experiments.

The network topology is shown in Fig. 6.7. The experiment consists of varying the number

of transmitting one-hop neighbors that a receiver (in this case R0) has. Accordingly, when

37

5.000

10.000

15.000

20.000

25.000

400 600 800 1000 1200

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Packet size in bytes

Receiver Throughput for poisson traffic

correct data channels
wrong data channels

5.000

10.000

15.000

20.000

25.000

400 600 800 1000 1200

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Packet size in bytes

Receiver Throughput for poisson traffic

correct data channels
wrong data channels

Figure 6.6: Receiver throughput at node 2 with varying packet sizes, Average

Interarrival Time = 0.05 seconds

there is only a single one-hop neighbor, the network consists of nodes S0; R0; S1 and R1.

For two one-hop neighbors the nodes S2 and R2 are added, and so on.

data traffic

1

S0R0

S1R1

S2R2

RN SN

N

wireless connectivity

Figure 6.7: Topology for throughput simulation with varying number of neighbors

The packet size is 500 bytes and the data tra�c is Poisson. Results have been plotted

for two tra�c rates, one with an interarrival time of 0.05 seconds and the other with an

interarrival time of 0.1 seconds.

38

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

0 1 2 3 4 5

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Number of neighbors

Receiver Throughput for poisson traffic

correct data channels
wrong data channels

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

0 1 2 3 4 5

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Number of neighbors

Receiver Throughput for poisson traffic

correct data channels
wrong data channels

Figure 6.8: Receiver throughput at node 2 with varying number of 1-hop neighbors,

Average Interarrival time = 0.1 seconds

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

0 1 2 3 4 5

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Number of neighbors

Receiver Throughput for poisson traffic

correct data channels
wrong data channels

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

0 1 2 3 4 5

R
ec

ei
ve

r
th

ro
ug

hp
ut

 in
 K

B
yt

es
/s

ec

Number of neighbors

Receiver Throughput for poisson traffic

correct data channels
wrong data channels

Figure 6.9: Receiver throughput at node 2 with varying number of 1-hop neighbors,

Average Interarrival time = 0.05 seconds

Fig. 6.8 plots the case of the low data tra�c rate. We can see that the throughput in the

network with wrong code assignment falls drastically as the number of neighbors increases.

This basically corresponds to the case of pure ALOHA. On the other hand, the network

with correct code assignment is not a�ected by the number of neighbors. Besides correct

code assignment, another reason for better performance, is that at low data tra�c rates

39

there are not many RTSs colliding. Fig. 6.9 shows the case of the higher data tra�c rate.

The throughput for wrong code assignment plummets as was seen in the low tra�c rate.

However, the throughput for correct code assignment falls too, indicating increased RTS

collisions.

6.3 Scalability

This section describes the results of the experiments used to measure the scalability

of the algorithm. Scalability can be measured using three metrics: number of CAMs,

events and the time it takes for the algorithm to converge. The �rst experiment runs the

code assignment algorithm on a static network and compares values for nodes with di�erent

connectivity. The second experiment runs the algorithms on networks of di�ering maximum

connectivity.

6.3.1 Experiment 1

The code assignment algorithm is run on the graph shown in Fig. 6.10. There are six

nodes with one one-hop neighbors, six nodes with two one-hop neighbors, two nodes with

three one-hop neighbors, four nodes with four one-hop neighbors and four nodes with �ve

one-hop neighbors. The values are collected for each of the node and then the values for

nodes with the same one-hop connectivity are averaged. The results are shown in Fig. 6.11

and Fig. 6.12.

We can see from the graph in Fig. 6.11 that the number of messages increases with

increased connectivity. There is almost a linear relationship between messages and one-hop

connectivity. The variation from a linear relationship results from the presence of 3-way

cliques, i.e, nodes that are both one-hop and two-hops away. Fig. 6.12 shows that the

number of events also increases with the increasing connectivity.

40

connectivity

0

3

4 5

6

9 10

82

11

12

13

15

16

18

1920

2117

7

141

Figure 6.10: Network topology for the scalability experiment

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0 1 2 3 4 5 6

N
um

be
r

of
 C

A
M

’s

Number of one-hop neighbors

Code assignment messages in nodes with differentconnectivity

CAM’s

Figure 6.11: Change in number of event-driven CAMs as one-hop connectivity

increases

41

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0 1 2 3 4 5 6

N
um

be
r

of
 E

ve
nt

s

Number of one-hop neighbors

Events in nodes with differentconnectivity

Events

Figure 6.12: Change in number of events as one-hop connectivity increases

6.3.2 Experiment 2

This experiment attempts to compare the time it takes for the network to converge. We

compare networks with varying maximum connectivity. The setup used in this experiment

is the same as that used in Section 6.2.3. As the neighbors S0, S1, S2, S3 and S4 are

added the maximum degree of network changes from two to �ve. There is no data tra�c in

this experiment. The transmission rates of all the nodes are constant at 1 Mb/s. Fig. 6.13

shows the results. The convergence time increases as the maximum degree of the network

increases.

6.4 Mobility

The �nal experiment we did was to test the adaptiveness of the code assignment algo-

rithm to mobility of the nodes. For this experiment, we used the graph with 30 nodes shown

in Fig. 6.14. To introduce mobility, we used a utility in CPT that picks random nodes for

movement. The path taken by the nodes is also random. The utility automatically adjusts

42

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

1 2 3 4 5 6

S
ec

on
ds

 fo
r

co
nv

er
ge

nc
e

Maximum degree of network

Convergence Time with varying maximum connectivity

convergence time

Figure 6.13: Convergence time for networks of varying maximum connectivity

the attenuation between the nodes to match the speeds at which the nodes move. We stud-

ied the mobility results for three cases; �ve nodes moving, 15 nodes moving and 25 nodes

moving. For each of these cases we studied three speeds, 0.01 meters/sec, 0.1 meters/sec

and 1.0 meters/sec. For each of the nine cases we generated 10 di�erent mobility sets, i.e.,

a di�erent set of random nodes would move each time. The transmission rate is 1 Mbps.

Number of Mobile Nodes 5 15 25

Speed in meters/sec Average/� Average/� Average/�

0.01 715.4/0.84 716/1.05 716.4/1.35

0.1 715.8/1.93 718.2/1.39 725.7/6.44

1.0 745/13.51 808.1/61.30 1125.2/550.61

Table 6.1: Number of event driven Code Assignment messages sent over a period

of 1900 seconds

The results are shown in Table 6.1 and Table 6.2. We see that there is almost no change

43

10

13 2

28
18

1

22
30

5 3

26
23

12

16

6

27
24

21

17

25
19

8

4

11

7

9

29

14

1520

Figure 6.14: Initial 30 nodes topology for mobility testing

Number of Mobile Nodes 5 15 25

Speed in meters/sec Average/� Average/� Average/�

0.01 1933.6/1.35 1934.2/1.40 1935.2/2.20

0.1 1934.6/2.80 1940.2/5.181 1958.7/16.40

1.0 2039.7/58.52 2256.1/227.59 3222.1/1511.02

Table 6.2: Events measured over a period of 1900 seconds

in the number of event-driven CAMs and events for very slow speeds, no matter how many

nodes move. At 0.1 meters/s the increase is still low, about 1.4% in the case of event-driven

CAMs and about 1.3% in the case of events. The last speed is 1.0 meters/sec (3.6 km/hr)

which approximately corresponds to the walking speed of a person with a handheld device.

Here, we see a 51% of increase in the number of messages as we move from 5 mobile nodes

to 25 mobile nodes. The increase in the number of events is about 58%.

44

The messages/sec and the events/sec are shown in Figs. 6.15 and 6.16. As can be seen

in the graphs the standard deviation is also much higher at the speed 1.0 m/sec. This is

because at lower speeds the connectivity does not change much no matter how many nodes

move and which nodes move. At higher speeds, the connectivity comes into play. When a

node with higher connectivity moves it causes much more exchange of messages than when

a node of lower connectivity moves. Hence, we see a wide variation.

6.5 Summary

In this chapter, we discussed the results of the simulation experiments of the Code

Assignment Algorithm. The simulations were done using the C++ Protocol Toolkit. The

results indicate that correct channel assignment using the Code Assignment Algorithm

results in approximately 38% increase in throughput. We also see that the number of

messages and events to be processed increases linearly as one-hop connectivity increases.

This indicates good scalability as the performance of the algorithm is dependent on only

local topology and not the global topology of the network. Finally, we have tested the

algorithm in a mobile environment and tabulated the messages and events for various speeds.

45

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 5 10 15 20 25 30

N
um

be
r

of
 M

es
sa

ge
s/

se
c

Number of mobile nodes

Messages/sec versus number of mobile nodes at speed 0.01 meters/sec

CAM’s

(a)

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 5 10 15 20 25 30

N
um

be
r

of
 M

es
sa

ge
s/

se
c

Number of mobile nodes

Messages/sec versus number of mobile nodes at speed 0.1 meters/sec

CAM’s

(b)

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 5 10 15 20 25 30

N
um

be
r

of
 M

es
sa

ge
s/

se
c

Number of mobile nodes

Messages/sec versus number of mobile nodes at speed 1.0 meters/sec

CAM’s

(c)

Figure 6.15: Number of event-driven Messages/sec at speeds of (a) 0.01 m/sec (b)

0.1 m/sec (c) 1.0 m/sec

46

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

0 5 10 15 20 25 30

N
um

be
r

of
 E

ve
nt

s/
se

c

Number of mobile nodes

Events/sec versus number of mobile nodes at speed 0.01 meters/sec

Events

(a)

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

0 5 10 15 20 25 30

N
um

be
r

of
 E

ve
nt

s/
se

c

Number of mobile nodes

Events/sec versus number of mobile nodes at speed 0.1 meters/sec

Events

(b)

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

0 5 10 15 20 25 30

N
um

be
r

of
 E

ve
nt

s/
se

c

Number of mobile nodes

Events/sec versus number of mobile nodes at speed 1.0 meters/sec

Events

(c)

Figure 6.16: Events/sec at speeds of (a) 0.01 m/sec (b) 0.1 m/sec (c) 1.0 m/sec

47

7. Conclusions

7.0.1 Results

Dynamic channel assignment in multihop radio networks and code assignment in CDMA

networks can be mapped onto the two-hop node coloring problem in graph theory which is

known to be NP-complete. Since the problem is NP-complete, all polynomial time solutions

necessarily have to be heuristic/greedy solutions.

We have presented an algorithm for dynamic channel assignment in multihop packet-

radio networks. This algorithm can also be used for code assignment in CDMA networks.

This algorithm is completely distributed and does not rely on base stations. Therefore, it

is ideal for use in ad-hoc networks. The algorithm is based on using a control channel to

obtain information about the transmission codes used by nodes one-hop and two-hops away.

Information about the transmission codes is disseminated using the control messages and

not tokens or any such mechanism prone to failure.

The algorithm was shown to be correct and its complexity was analyzed [GLAR97]. The

storage requirement of the algorithm is very small typically proportional to the square of

the degree of the network. The number of messages generated are also proportional to the

square of the degree of the network. Simulations of the algorithm were done in CPT. The

algorithm was implemented and interfaced to the routing protocol (WIRP) and the MAC

protocol (FAMA) implemented in Wireless Internet Gateways (WINGS) [Win, ea97]. We

showed that the algorithm results in a substantial increase in throughput. The algorithm

scales well and adapts to mobility well. To check this, we measured the number of code

assignment messages, the number of events and the time the algorithm takes to converge.

The time to converge was shown in simulations to depend on the maximum degree of the

network.

48

7.0.2 Future Work

As the algorithm stands now, in a pathological case a change of code could result in an

entire network changing its code. Future work could include looking for ways to limit these

changes to previously demarcated areas.

Another research problem would be to look into what kind of end-to-end guarantees

can be given in a network where reservation of channels can be done for requested amounts

of time. Research in this direction could lead to interesting solutions to making ad-hoc

networks capable of supporting integrated services. This research direction includes making

the notion of a \code" assignment applicable to scheduling of transmissions over time and

frequencies.

49

References

[Abr70] N. Abramson. The ALOHA System - Another Alternative for Computer Com-
munications. In Proc. Full Joint Computer Conference, pages 281{85, 1970.

[Abr73] N. Abramson. Packet switching with satellites. In Nat. Comput. Conf., AFIPS
Conf. Proc., volume 42, pages 695{702, Montvale, N.J., 1973.

[BB95] A.A. Bertossi and M.A. Bonuccelli. Code Assignment for Hidden Terminal
Interference Avoidance in Multihop Radio Networks. IEEE/ACM Trans. on
Networking, 3(4):441{449, August 1995.

[BG94] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall Inc., 2nd edition,
September 1994.

[CF94] Imrich Chlamtac and Andras Farago. Making Transmission Schedules Immune
to Topology Changes in Multi-Hop Packet Radio Networks. TON, 2(1):23{29,
February 1994.

[CK85] I. Chlamtac and S. Kutten. On Broadcasting in Radio Networks- Problem
Analysis and Protocol Design. IEEE Trans. Computers, COM-33(12), December
1985.

[CK87] I. Chlamtac and S. Kutten. Tree-Based Broadcasting in Multihop Radio Net-
works. IEEE Trans. Computers, October 1987.

[CS88] I. Cidon and M. Sidi. Distributed Assignment algorithms for Multihop Packet-
Radio Networks. Proc. IEEE Infocom, pages 1110{1118, 1988.

[ea97] J.J. Garcia-Luna-Aceves et. al. Wireless Internet Gateways (WINGS). In Proc.
IEEE MILCOM 97,, Monterey, CA, 1997.

[ET90] A. Ephremides and T.V. Truong. Scheduling Broadcasts in Multihop Radio
Networks. IEEE Trans. Computers, 38(4):456{460, April 1990.

[FG95] C.L. Fullmer and J.J. Garcia-Luna-Aceves. FAMA-PJ:A Channel Access Proto-
col for Wireless LANs. Proc. ACM Mobile Computing and Networking, 1995.

[FGLA97] C. L. Fullmer and J.J. Garcia-Luna-Aceves. Solutions to Hidden Terminal
Problems in Wireless Networks. In Proc. ACM SIGCOMM '97, Cannes, France,
1997.

[GLAR97] J.J. Garcia-Luna-Aceves and Jyoti Raju. Distributed Assignment of Codes for
Multihop Packet-Radio Networks. In Proc. IEEE MILCOM97, November 1997.

[HS88] B. Hajek and G. Sasaki. Link Scheduling in Polynomial Time. IEEE Trans.
Inform. Theory, 34(5):910{917, September 1988.

[Hu93] L. Hu. Distributed Code Assignment for CDMA Packet Radio Networks.
IEEE/ACM Trans. on Networking, 1(6):668{677, Dec 1993.

[IEE91] IEEE. P802.11-Unapproved Draft. Wireless LANMedium Access Control(MAC)
and Physical Speci�cations, Nov 1991.

[Kar90] P. Karn. MACA - a new channel access method for packet radio. InARRL/CRRL
Amateur Radio 9th Computer Networking Conference, pages 134{40, 1990.

[KL73] L. Kleinrock and S. Lam. Packet-switching in a slotted satellite channel. vol-
ume 42, pages 703{710, Montvale, N.J., 1973.

50

[Mak87] T.Makansi. Trasmitter-OrientedCodeAssignment forMultihopRadioNetworks.
IEEE Trans. Computers, COM-35(12):1379{1382, Dec 1987.

[MGLA96] S. Murthy and J.J. Garcia-Luna-Aceves. An E�cient Routing Protocol for
Wireless Networks. ACM Mobile Networks and Applications Journal, 1(2):183{
197, Oct 1996.

[Ric] Ricochet Wireless Network. http://www.ricochet.net/netoverview.html.

[RKM95] R. Meidan R. Kohno and L.B. Milstein. Spread Spectrum Access Methods
for Wireless Communications. IEEE Communications Magazine, pages 58{67,
January 1995.

[RL93] S. Ramanathan and E. L. Lloyd. Scheduling Algorithms for Multihop Radio
Networks. TON, 1(2):166{177, April 1993.

[Tan96] A. S. Tanenbaum. Computer Networks. Prentice Hall, 3rd edition, 1996.

[TK75a] F. A. Tobagi andL.Kleinrock. Packet Switching in radio channels: Part I - Carrier
SenseMultiple-AccessModes and their Throughput-DelayCharacteristics. IEEE
Trans. Commun., COM-23(12):1400{1416, December 1975.

[TK75b] F. A. Tobagi and L. Kleinrock. Packet Switching in radio channels: Part II - the
hidden terminal problem in carrier sensemultiple-accessmodes and the busy-tone
solution. IEEE Trans. Commun., COM-23(12):1417{1433, December 1975.

[TK76] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels: Part III -
Polling and (Dynamic) Split-Channel Reservation Multiple Access. IEEE Trans.
Commun., 24(8), 1976.

[VBZ94] S. Shenker V. Bhargavan, A. Demers and L. Zhang. MACAW: A Media Access
Protocol for Wireless LAN's. In Proc. ACM SIGCOMM '94, pages 212{25,
London, UK, 1994.

[Win] Wireless Internet Gateways. http://www.cse.ucsc.edu/research/ccrg
/projects/wings.html.

